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Abstract. We have investigated the proof of the H theorem within a manifestly covariant approach by
considering the relativistic statistical theory developed in [G. Kaniadakis, Phys. Rev. E 66, 056125 (2002);
G. Kaniadakis, Phys. Rev. E 72, 036108 (2005)]. As it happens in the nonrelativistic limit, the molecular
chaos hypothesis is slightly extended within the Kaniadakis formalism. It is shown that the collisional equi-
librium states (null entropy source term) are described by a κ power law generalization of the exponential
Juttner distribution, e.g., f(x, p) ∝ (

√
1 + κ2θ2 + κθ)1/κ ≡ expκ θ, with θ = α(x) + βµpµ, where α(x) is a

scalar, βµ is a four-vector, and pµ is the four-momentum. As a simple example, we calculate the relativistic
κ power law for a dilute charged gas under the action of an electromagnetic field F µν . All standard results
are readly recovered in the particular limit κ → 0.

PACS. 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems
– 05.20.-y Classical statistical mechanics

1 Introduction

The Boltzmann’s famous H theorem, which guarantees
positive-definite entropy production outside equilibrium,
also describes the increase in the entropy of an ideal gas
in an irreversible process, by considering the Boltzmann
equation. Roughly speaking, this seminal theorem im-
plies that in the equilibrium thermodynamic the distribu-
tion function of an ideal gas evolves irreversibly towards
Maxwellian equilibrium distribution [1]. In the special rel-
ativistic domain, the very first derivation of this theo-
rem was done by Marrot [2] and, in the local form, by
Ehlers [3], Tauber and Weinberg [4] and Chernikov [5]. As
well-known, the H theorem furnishes the Juttner distri-
bution function for a relativistic gas in equilibrium, which
contains the number density, the temperature, and the
local four-momentum as free parameters [6].

Recently, this theorem has also been investigated in the
context of a nonextensive statistic mechanics (NSM) [7].
In fact, the NSM has been proposed as a possible extension
of the classical one, being a framework based on the devi-
ations of Boltzmann-Gibbs-Shannon entropic measure [8].
It is worth mentioning that most of the experimental evi-
dence supporting a NSM are related to the power-law dis-
tribution associated with the many-particle systems [9].
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More recently, based on similar arguments, Abe [10,11]
and Kaniadakis [12,13] have also proposed other entropic
formulas. In this latter ones, the κ-entropy emerges in the
context of the special relativity and in the so-called kinetic
interaction principle (KIP). In particular, the relativistic
H theorem in this approach has also been investigated
through a self-consistent relativistic statistical theory [14]
and through the framework of nonlinear kinetics [15].

Actually, this κ-framework leads to a class of one pa-
rameter deformed structures with interesting mathemati-
cal properties [16]. In particular, the so-called Lesche sta-
bility was checked in the κ-framework [17]. It was also
shown that it is possible to obtain a consistent form for
the entropy (linked with a two-parameter deformations
of logarithm function), which generalizes the Tsallis, Abe
and Kaniadakis logarithm behaviours [18]. In the experi-
mental viewpoint, there exist some evidence related with
the κ-statistics, namely, cosmic rays flux, rain events in
meteorology [16], quark-gluon plasma [19], kinetic models
describing a gas of interacting atoms and photons [20],
fracture propagation phenomena [21], and income distri-
bution [22], as well as construct financial models [23]. In
the theoretical front, some studies on the canonical quanti-
zation of a classical system has also been investigated [24].

From the mathematical viewpoint, the κ-framework is
based on κ-exponential and κ-logarithm functions, which
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is defined by

expκ(f) =
(√

1 + κ2f2 + κf
)1/κ

, (1)

lnκ(f) =
(
fκ − f−κ

)
/2κ. (2)

The κ-entropy associated with κ-framework is given by

Sκ(f) = −
∫

d3pf
[
aκfκ + a−κf−κ + bκ

]
, (3)

which recovers standard Boltzmann-Gibbs entropy
Sκ=0(f) = − ∫

f ln fd3p in the limit κ → 0, i.e., the Sκ=0

is obtained through the constraints on the constants aκ

and bκ given by (see Refs. [12,13] for details)

lim
κ→0

[κaκ − κa−κ] = 1, lim
κ→0

[bκ + aκ + a−κ] = 0. (4)

Hereafter the Boltzmann constant is set equal to unity for
the sake of simplicity.

Previous works have already discussed some specific
choices for the constants aκ and bκ, i.e., for the pair [aκ =
1/2κ, bκ = 0], the Kaniadakis entropy reads [11,12]

Sκ = −
∫

d3pf lnκ f = −〈lnκ(f)〉. (5)

In particular, for entropy (5) the H theorem has been
proved in reference [13]. Here, we consider the choice [aκ =
1/2κ(1 + κ), bκ = −aκ − a−κ] with the κ-entropy given
by [11]

Sκ = −
∫

d3p

(
f1+κ

2κ(1 + κ)
− f1−κ

2κ(1 − κ)
+ bκf

)
. (6)

In this paper, we intend to extend the nonrelativis-
tic H theorem within the Kaniadakis framework to the
special relativistic domain through a manifestly covariant
approach. As we shall see, our approach does not consider
the so-called deformed mathematics [13]. Rather, we show
a proof for the H theorem based on similar arguments of
references [25,26], e.g., a generalization of the molecular
chaos hypothesis and of the four-entropy flux.

2 Classical H theorem

We first recall the basis for the proof of the standard H
theorem within the special relativity. As well-known, the
H theorem is also based on the molecular chaos hypoth-
esis (Stosszahlansatz), i.e., the assumption that any two
colliding particles are uncorrelated. This means that the
two point correlation function of the colliding particles can
be factorized

f(x, p, p1) = f(x, p)f(x, p1), (7)

or, equivalently,

ln f(x, p, p1) = ln f(x, p) + ln f(x, p1), (8)

where p and p1 are the four-momenta just before collision
and the particles have four-momentum p ≡ pµ = (E/c,p)
in each point x ≡ xµ = (ct, r) of the space-time, with
their energy satisfying E/c =

√
p2 + m2c2. In order to

complete the proof of the H theorem, we combine the
Boltzmann equation with the four-divergence of the four-
entropy flow, i.e.,

Sµ = −c2

∫
d3p

E
pµf ln f. (9)

In this concern, it is possible to show that the relativistic
Kaniadakis entropy is consistent with a slight departing
from “Stosszahlansatz”. Basically, this means the replace-
ment of the logarithm functions appearing in (8) by κ-
logarithmic (power laws) defined by equation (2). In real-
ity, it is worth mentioning that the validity of the chaos
molecular hypothesis still remains as a very controversial
issue [27].

2.1 Generalized H theorem

In order to investigate H theorem in the context of the
Kaniadakis statistics, we first consider a relativistic rar-
efied gas containing N point particles of mass m enclosed
in a volume V , under the action of an external four-force
field Fµ. Naturally, the states of the gas must be char-
acterized by a Lorentz invariant one-particle distribution
function f(x, p), which the quantity f(x, p)d3xd3p gives,
at each time t, the number of particles in the volume el-
ement d3xd3p around the particles space-time position x
and momentum p. By considering that every influence of
a power law statistic must happen within the collisional
term of Boltzmann equation (see also [25,26]), we assume
that the temporal evolution of the relativistic distribu-
tion function f(x, p) is given by the following κ-transport
equation

pµ∂µf + mFµ ∂f

∂pµ
= Cκ(f), (10)

where µ = 0, 1, 2, 3 and ∂µ = (c−1∂t,∇) indicates differ-
entiation with respect to time-space coordinates and Cκ

denotes the relativistic κ-collisional term. Following the
same physical arguments concerning the collisional term
from approach of references [25,26], we have that Cκ(f)
has the general form

Cκ(f) =
c

2

∫
FσRκ(f, f ′)

d3p1

E1
dΩ, (11)

where dΩ is an element of the solid angle, the scalar
F is the invariant flux, which is equal to F =√

(pµpµ
1 )2 − m4c4, and σ is the differential cross section of

the collision p+p1 → p′ +p′1; see reference [28] for details.
All quantities are defined in the center-of-mass system of
the colliding particles. Next, we observe that Cκ must be
consistent with the energy, momentum, and the particle
number conservation laws, and its specific structure must
be such that the standard result is recovered in the limit
κ → 0.
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Here, the κ-generalized form of molecular chaos hy-
pothesis is also a difference of two correlation functions

Rκ(f, f ′) = expκ (lnκ f ′ + lnκ f ′
1) − expκ (lnκ f + lnκ f1) ,

(12)
where primes refer to the distribution function after col-
lision, and expκ(f), lnκ(f), are defined by equations (1)
and (2). Note that for κ = 0, the above expression re-
duces to R0 = f ′f ′

1 − ff1, which is exactly the standard
molecular chaos hypothesis. In the present framework, the
κ four-entropy flux reads

Sµ
κ = −c2

∫
d3p

E
pµ

(
f1+κ

2κ(1 + κ)
− f1−κ

2κ(1 − κ)
+ bκf

)
,

(13)
where for µ = 0, the quantity c−1S0

κ stands for the local
Kaniadakis‘ entropy density, as given by (6). Indeed, by
taking the four-divergence of Sµ

κ , i.e.,

∂µSµ
κ ≡ τκ = −c2

∫
d3p

E
pµ∂µf(lnκ f + bκ), (14)

and combining with κ relativistic Boltzmann equa-
tion (10), we obtain the source term

τκ = −c3

2

∫
d3p

E

d3p1

E1
dΩFσRκ(lnκ f + bκ). (15)

Next, τκ can be written in a more symmetrical form by
using some elementary symmetry operations, which also
take into account the inverse collisions. Let us notice that
by interchanging p and p1 the value of the integral above
is not modified. This happens because the scattering cross
section and the magnitude of the flux are invariants [28].
The value of τκ is not altered if we integrate with respect to
the variables p′ and p′1. Although changing the sign of Rκ

in this step (inverse collision), the quantity d3pd3p1/p0p0
1

is also a collisional invariant [28]. As one may check, such
considerations imply that the κ-entropy source term can
be written as

τκ(x) =
c3

8

∫
d3p

E

d3p1

E1
dΩFσ

(
lnκ f ′

1 + lnκ f ′

− lnκ f1 − lnκ f
)[

expκ (lnκ f ′ + lnκ f ′
1)

− expκ(lnκ f + lnκ f1)
]
. (16)

As is well-known, the irreversibility thermodynamics
emerging from molecular collisions is quite obtained if
τκ(x) is positive definite. This condition is guaranteed
only when the integrand in (16) is not negative. In-
deed, by introducing the auxiliary functions, namely z =
expκ(lnκ f + lnκ f1) and y(z) = lnκ f + lnκ f1. The dif-
ferences z′ − z and y′ − y can be positive or negative and
these differences have the same sign if the functions y is an
increasing function. However, lnκ f is an increasing func-
tion and then product (y′ − y)(z′ − z) is always positive
for any pair of distributions (f, f1) and (f ′, f ′

1). Therefore,
the positiveness of τκ must be established [28,29].

For the sake of completeness, let us derive the ver-
sion of the Juttner distribution within the κ-statistic.
Such an expression is the relativistic version of the κ-
distribution [16], and must be obtained as a natural con-
sequence of the relativistic H theorem. At this point, it is
interesting to emphasize that such a distribution already
has been introduced by Kaniadakis through a variational
problem in a selfconsistent approach; see reference [14]
for details. The H theorem states that τκ = 0 is a nec-
essary and sufficient condition for equilibrium. Since the
integrand of (16) cannot be negative, this occurs if and
only if

lnκ f ′ + lnκ f ′
1 = lnκ f + lnκ f1, (17)

where the four-momenta are connected through a conser-
vation law

pµ + pµ
1 = p′µ + p′µ1 ,

which is valid for any binary collision. Therefore, the above
sum of κ-logarithms remains constant during a collision:
it is a summational invariant. In the relativistic case, the
most general collisional invariant is a linear combination of
a constant plus the four-momentum pµ; see reference [28].
Consequently, we must have

lnκ f(x, p) = θ = α(x) + βµpµ, (18)

where α(x) is a scalar, βµ a four-vector, and pµ is the
four-momentum. By using that expκ(lnκ f) = f , we may
rewrite (18) as

f(x, p) = expκ θ =
(√

1 + κ2θ2 + κθ
)1/κ

, (19)

with arbitrary space and time-dependent parameters α(x)
and βµ(x). Some considerations on the function f(x, p) are
given as follows. First, this is the most general expression
which leads to a vanishing collision term and entropy pro-
duction, and reduces to Juttner distribution in the limit
κ → 0. However, it is not true in general that f(x, p) is a
solution of the transport equation. This happens only if
f(x, p) also makes the left-hand-side of the transport equa-
tion (10) to be identically null. Nevertheless, since (19) is
a power law, the transport equation implies that the pa-
rameters α(x) and βµ(x) must only satisfy the constraint
equation

pµ∂µα(x) + pµpν∂µβν(x) + mβµ(x)Fµ(x, p) = 0. (20)

Second, the above expression is also the relativistic ver-
sion of the Kaniadakis distribution [12]. Here, this was ob-
tained through the different approach from the one used
in references [13,14].

As an example, let us now consider a relativistic gas
under the action of the Lorentz 4-force

Fµ(x, p) = −(q/mc)Fµν(x)pν ,

where q is the charge of the particles and Fµν is the
Maxwell electromagnetic tensor. Following standard lines,
it is easy to show that the local equilibrium function in
the presence of an external electromagnetic field reads

f(x, p) = expκ

[
µ − [pµ + c−1qAµ(x)]Uµ

T

]
, (21)
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where Uµ is the mean four-velocity of the gas, T (x) is the
temperature field, µ is the Gibbs function per particles,
and Aµ(x) the four potential. As physically expected, note
also that the above expression reduces, in the limit κ → 0,
to the well known expression [28,30]

f(x, p) = exp
(

µ − [pµ + c−1qAµ(x)]Uµ

T

)
. (22)

3 Conclusions

In references [25,26] we have discussed the H theorem
in the context from the Kaniadakis and Tsallis statistics
within the nonrelativistic and relativistic domain. Based
on the generalization of the chaos molecular hypothesis
and the entropic measure, it was shown the proof of the
H theorem in both domain. In this paper, by considering
the same arguments on the chaos molecular and entropy,
and regardless of the deformed mathematics introduced
in reference [13], we have studied a κ-generalization of the
relativistic Boltzmann’s kinetic equation along the lines
defined by the Kaniadakis statistics. In reality, since the
basic results were obtained through a manifestly covariant
way, their generalization to the general relativistic domain
may be readly derived. Finally, we also emphasize that
our proof is consistent with the standard laws describ-
ing the microscopic dynamics, and reduce to the familiar
Boltzmann proof in the limit κ → 0.

The author is supported by CNPq (301600/2006-6) and CNPq
(478897/2006-5).
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